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INTRODUCTION

Most viruses encode functions used to regulate genome transcription. Examples include the
SV40 T-antigen, the adenovirus E1a protein, and the herpes virus immediate-early proteins. For
the human immunodeficiency viruses (HIV), Tat functions similarly, though not identically, to those
above. Over the past decade, we have learned much about Tat, both in structure and in function.
While a goal of this Los Alamos database is to completely compile relevant tat sequences, the intent
of this brief accompanying overview is not similarly archival, but rather to “add flavor” to raw
data. It is written for the purpose of apprising, in a short format, the readers on some of the current
thoughts about Tat. For more in-depth discussions, complete subject reviews can be found elsewhere
(e.g. Felber and Pavlakis, 1993; Jeang and Gatignol, 1994).

TAT FUNCTION

Tat is a small nuclear protein of 86 to 101 amino acids in size (depending on the viral strain)
which is encoded from two separate exons (see Section I). Analyses of “full-length” Tat have been
performed commonly using the 86 amino acid version. However, it should be noted that while many
laboratory strains (e.g. HXB2 and NL4-3) have the smaller Tat (86 aa) most HIV-1s have the 101
aa protein (see compendium Part II).

A. Transcription. Despite intensive efforts, the mechanism of Tat action remains incompletely
understood. It is, however, accepted that Tat is required for optimal HIV viability (Fisher et al.,
1986; Dayton et al., 1986). Tat’s role in critically directing transcription (Peterlin et al., 1986; Rice
and Mathews, 1988; Laspia and Mathews, 1989) from the HIV LTR is one indispensable function
suggested for this protein. However, increasingly there is evidence that Tat has other important
effects on the virus and on the host cell (see Concluding Perspectives, below).

In activating transcription from the LTR, Tat differs from other prototypic viral transcription
trans-activators in requiring a bipartite responsive element consisting of DNA and RNA. To our
knowledge, Tat is the first characterized eukaryotic transcription factor that binds to a nascent leader
RNA, TAR (Berkhout et al., 1989; Dingwall et al., 1989; Cordingley et al., 1990; Roy et al.,
1990; Calnan et al., 1991), and then influences formative events at the TATAA-enhancer-promoter
(Berkhout et al., 1990; Selby and Peterlin, 1990; Southgate et al., 1990; reviewed in Jeang et al.,
1991; see Fig. 1A). TAR RNA has extensive secondary structure containing a stem, a bulge, and
a loop (Muesing et al.,1987; Berkhout and Jeang, 1989; Roy et al., 1990c; see Fig. 1B). Earlier,
studies have indicated that the specific UCU sequence of the bulge is critical for binding by Tat
(Dingwall et al. 1989,; Roy et al. 1990a, Calnan et al., 1991; Cordingley et al., 1990). In
comparison, the structure of the stem, but not its specific sequence, was proposed to be important
for function. However, more recent findings reveal that both for Tat binding and for transcription
there are sequence specific requirements for the immediate stem nucleotide pairs that flank the bulge
(Weeks and Crothers, 1991; Berkhout and Jeang, 1991; Churcher et al., 1993). The loop of TAR
RNA is an important binding site for cellular factor(s) that cooperate with Tat in the activation of
the LTR (Sheline et al., 1991; Wu et al., 1991). A more extensive discussion of the role of cellular
factors that bind TAR RNA (Gatignol et al., 1989; Gaynor et al., 1989; Gatignol et al., 1991) is
presented in the compendium Part IV.

While it is clear that Tat binds TAR RNA and interacts with enhancer-promoter-binding factors
(Berkhout and Jeang, 1992), the mechanism by which these physical events influence transcription
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are not wholly evident. A number of models that attempt to explain the transcription function of Tat
have been proposed. These include i) anti-terminating (Kao et al., 1987) stalled RNA polymerase
II (RNAP II), ii) increasing processivity/elongation of transcribing RNAPII complex (Laspia et al.,
1989; Marciniak et al., 1990), and iii) facilitating initiation of RNAPII complexes at the promoter
(Laspia et al., 1989, Jeang and Berkhout, 1992; Jeang et al., 1993a; reviewed in Cullen, 1993).
Currently, there are conflicting findings that support each of the models. It is possible that Tat, like
basal transcription factor TFIIF (Buratowski, 1994), functions simultaneously as an initiation and
as an elongation factor. Alternatively, conflicting attributions could arise from differences in the
rate-limiting events (Jeang et al., 1993a) for the various experimental systems used to define Tat
action.

A couple of observations indicate that Tat is not a typical transcriptional trans-activator. First,
unlike other activators (Tjian and Maniatis, 1994), a modular activation domain has been difficult
to define for HIV-1 Tat (see below, Activity domains of Tat). Second, in different settings, neither
Tat nor Tat-chimera, in contrast to modular activators, is able to directly activate transcription from
a minimal TATA-promoter (Southgate and Green, 1991; Berkhout and Jeang, 1992; Kamine and
Chinnadurai, 1992). Instead for physiological activity, Tat requires the presence of an upstream
enhancer-binding factor such as Sp1 (Harrich et al., 1989; Kamine et al., 1991;; Southgate and
Green, 1991; Zimmermann et al., 1991; Jeang and Berkhout, 1992; Jeang et al., 1993b). Thus it
appears that Tat is more aptly classified with transcriptional co-activators (Dynlacht et al., 1991)
in bridging conformationally a stereospecific architecture (Tjian and Maniatis, 1994) between Sp1
(Jones and Tjian, 1985; Jones et al., 1986) and TATA-binding protein (TBP; Jeang et al., 1993b;
Huang et al., 1993; Kashanchi et al., 1994).

B. Translation. There is evidence that Tat also functions in regulating translation (Rosen et al.,
1986; Cullen, 1987). Indeed there are findings that TAR RNA can inhibit translation (Parkin et al.,
1988; SenGupta and Silverman, 1989) of HIV-1 mRNAs, most likely through activation of double-
stranded RNA-dependent protein kinase and 2-5A synthetase (SenGupta and Silverman, 1989; Edery
et al., 1989). Addition of Tat was found to reverse this translational inhibition (SenGupta et al.,
1990; Braddock et al., 1990).

ACTIVITY DOMAINS IN TAT

Tat is synthesized from an mRNA joined from two coding exons. The first exon codes for
amino acids 1–72, while (in most strains of HIV-1) the second exon codes for amino acids 73–101
(see Fig. 2). In most functional assays, the first 72 amino acids of Tat fully effect transcriptional
trans-activation of the LTR. In fact, a truncated 58 amino acid form of Tat is virtually completely
active in co-transfection assays (Seigel et al., 1986; Garcia et al., 1988; Kuppusway et al., 1989).

A. First coding exon. The combined results from many laboratories have permitted an arbitrary
demarcation of “domains” in Tat (Kuppuswamy et al., 1989). For instance, the N-terminus of Tat
(domain 1; Fig. 2) has 13 amino acids with amphipathic characteristics. Mutations that alter the
acidic composition of this region were felt originally to affect trans-activation (Rappaport et al.,
1989); however, results from a later study conflicted with this interpretation (Tiley et al., 1990).

Amino acids 22 to 37 (domain 2, Fig. 2) contain seven cysteines and are highly conserved
between different isolates of HIV-1s, group O as well as group M. Individual mutation in six of
the seven cysteines abolish Tat function (see Table I). Although originally proposed as a metal-
chelating dimerization domain (Frankel et al., 1988), this region was recently shown to be used for
intramolecular disulfide bond formation in monomeric Tat proteins found within cells (Koken et al.,
1994). Currently, it is believed that Tat is active functionally as a monomer rather than a dimer
(Rice and Chan, 1991; Koken et al., 1994).

Domain 3 (amino acids 40 to 48) contains a RKGLGI motif that is conserved between HIV-1,
HIV-2 and SIV Tat. This region, in conjunction with the amino terminus and the cysteine domain,
has been suggested to circumscribe the minimal activation domain of HIV-1 Tat (Carroll et al., 1991;
Derse et al., 1991). Domain 4 (amino acids 49-72) contains a basic RKKRRQRRR motif. These
amino acids confer TAR RNA-binding properties to Tat (Dingwall et al., 1989; Roy et al., 1990;
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Weeks et al., 1990; Chang and Jeang, 1992) and are important for nuclear localization of the protein
(Ruben et al., 1989; Hauber et al., 1989). However, recent studies suggest that this short basic
domain is insufficient in determining the entire specificity of Tat-TAR binding since amino acids
outside of the domain also contribute to this interaction (Churcher et al., 1993; Luo et al., 1993).

Table I summarizes 75 point mutations in the first coding exon of Tat collated from the work
of eight laboratories (Garcia et al., 1988; Sadaie et al., 1989; Kuppuswamy et al., 1989; Ruben et
al., 1989; Hauber et al., 1989; Meyerhans et al., 1989; Rice and Carlotti, 1990a; Rice and Carlotti,
1990b; Siderovski et al., 1992). As alluded to above, since the first 58 amino acids of Tat recapitulate
well the trans-activation function of the whole protein, it is not surprising that most of the mutations
are clustered within amino acids 1 to 58. In many cases, individual amino acids have been changed
to more than one counterpart. This heightens the validity of the resulting phenotype. Examination of
these mutants reveals that the region spanning amino acids 1–21 is remarkably tolerant of changes.
In contrast, changes in amino acids 22 through 40 were generally deleterious for trans-activation.
Finally, although the basic domain (amino acids 49–57) as a unit is necessary for Tat function,
individual amino acid changes do not significantly affect activity.

B. Second coding exon.Less information is available about the second coding exon of Tat. It is
clear that in routine transfection assays of HIV-1 Tat, absence of the second exon does not alter
greatly Tat activity. However, findings from HIV-2 and SIV Tat are quite clear in demonstrating that
this exon contributes towards optimal trans-activation (Viglianti and Mullin, 1988; Tong-Starksen
et al., 1993). Recently, there have been suggestions that the second exon of HIV-1 Tat, in specific
assays, is important for trans-activation (Jeang et al., 1993b) and for trans-repression (Howcroft et
al., 1993).

There are two short motifs in the second exon of HIV-1 Tat that could have functional impor-
tance (see Fig. 2). The first is an RGD sequence that is used as a cell adhesion signal for binding
to cellular integrins (Brake et al., 1990). This RGD motif is not found, however, in HIV-2 or SIV
Tat proteins. In addition, a ESKKKVE motif is conserved across different HIV-1 Tat proteins and
is partially preserved in HIV-2 and SIV Tats. However, because this motif falls beyond amino acid
86, commonly regarded as the C-terminal boundary of full-length Tat, its functional significance has
not been examined.

CONCLUDING PERSPECTIVES

While research on Tat has been narrowly focused upon its trans-activation properties for the
HIV LTR-promoter, there is increasing evidence that Tat has other pleiotropic effects on cellular
genes, host cell metabolism, and viral infectivity/pathogenesis (see e.g. Drysdale and Pavlakis,
1991). For instance, Tat is reported to function as a secreted growth factor in stimulating the growth
of Kaposi-like cells (Ensoli et al., 1990; Ensoli et al., 1993; Barillari et al., 1993). It can affect the
organization of neurons and astrocytes (Kolson et al., 1993) and is neurotoxic at low concentrations
(Sabatier et al., 1991). Some of these findings are partly explained by the ability of Tat to modulate
expression of cellular genes (Roy et al., 1990b; Buonaguro et al., 1994; Scala et al., 1994), to perturb
ambient levels of cytokines (Rautonen and Rautonen, 1992), and to protect cells from programmed
cell death (Zauli et al., 1993).

Because the viral functions of Tat have been largely extrapolated from subgenomic experiments,
one is unsure whether these findings reflect well the complete role of Tat in the setting of the whole
virus. The limited number of experiments performed on Tat function in the context of infectious
virions suggests that Tat has additional roles, beyond transcription, in affecting viral pathogenicity
(Cheng-Mayer et al., 1991; Sakai et al., 1992; Huang et al., 1994).
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Fig. 1. Interaction of Tat with DNA and RNA targets in the HIV-1 LTR. A) A schematic
representation of the functional interactions between Tat, TAR-RNA-binding proteins and promoter
elements. Biochemical evidence exists that Tat contacts directly SP1 (Jeang et al., 1993b) and
TATAA-binding protein (TBP; Kashanchi et al., 1994). B) Secondary structure of TAR RNA. The
crucial trinucleotide bulge and hexanucleotide loop elements are boxed.
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Fig. 2. Domain classifications of Tat protein. The demarcation of domains is somewhat
arbitrary. The first exon includes amino acids 1–72, while the second exon includes 73-101. Motifs
and characteristics of each “domain” are indicated above or below each region.
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Table I. Point mutations in Tat

Original Amino Acids(s) Mutant Resulting Consensus
and Their Position(s) Amino Acid(s) Activity Amino Acid(s)

Q2 A ++ E
P3 A ++ P
P3 Q ++ P
V4 A ++ V
D5 A + D
P6 A ++ P
P6 S ++ P
�3–6 +
P6P10 LL ++
R7 A ++ R
L8 A ++ L
E9 A ++ E
P10 A ++ P
P10P13 LL ++
W11 A ++ W
K12 A ++ K
K12 N ++ K
P18 A ++ P
K19 R ++ K
A21 D ++ A
A21T23 VA +
T23 A ++ T
C22 S – C
C22 G – C
N23 T ++ T
N24 A ++ N
N24 K ++ N
C25 R – C
C25 G – C
Y26 A + Y
Y26 F ++ Y
C27 S – C
C27 G – C
K28K29 AA + KK
K28K29 EA – KK
C30 G – C
C31 S ++ C
C31 E – C
C31 G ++ C
F32 A + F
H33 A – H
C34 G –
C34 S – C
G35 A + Q

Key: Column 3, ++> 50% wild type activity; +> 10% wild type
activity; +/– or – indicate<10% wild type activity.
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Table I. (cont.) Point mutations in Tat

Original Amino Acids(s) Mutant Resulting Consensus
and Their Position(s) Amino Acid(s) Activity Amino Acid(s)

C37 G – C
C37 S – C
F38 A – F
F38 L ++ F
K40 D – T
K40 T ++ T
K41 A – K
K41* T – K
K41* T ++ K
L43 F + L
G44 S ++ G
S46 A ++ S
S46 P – S
Y47 H ++ Y
Y47 A ++ Y
G48 S ++ G
G48R49y SG ++
R49 T ++ R
K50 stop – K
K50K51 Y50Y51 + KK
K50K51 S50G51 +/+
K50 E ++ K
K50 T ++ K
R52 E ++ R
R53 I ++ R
Q54 N ++ Q
R55 G + R
R55R56 L55T56 +
R56 E ++ R
R57Q63 SE ++ RQ
L69 I ++ L

Key: Column 3, ++> 50% wild type activity; +> 10% wild type
activity; +/– or – indicate<10% wild type activity.

* Different results reported for the same mutation from Kuppuswamy et
al., 1989, and Myerhans et al., 1989.

y Amino acids beyond position 59 completely changed.
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HIV-1 Tat Consensus Sequences

\/3’sj \/3’sj
rev cds ->

CONSENSUS.A M?PVDPnLEPWnHPGSqPTTaCskCYCK?CCwHCqlCFLnKGLGISYGrKKR..r?RRgtPQ.s?kDhQnp 64
CONSENSUS.B -e----r----k------kt-ctn----k--f---v--tt-g-g--------..-Q-rrapq.dSqt--vs 68
CONSENSUS.C m--v--?--------s--K---t--yc-k-sY--lV--qt------------..-q--sa-?.-SE----- 65
CONSENSUS.D md-v---l-p--------r-p-N--?--K--Y---v--it------------..-Q--rppq.g-Qa--v- 66
CONSENSUS.O -D----E?P--H----?-Q?P-NN----R--Y--YV--??------?-----....?-PAAA?--P-?KD- 57
CONSENSUS.CPZ -D-?-????--?--???-?-?-NN-------Y--??--TK----------?-???---T???.?S?NN-D? 45

exon\/exon
CONSENSUS.A ipKQplPqtqg??ptgpkESkKkVeSKteTDrf? 95
CONSENSUS.B Ls-q-?s-pr-D.-----es-k---rE--tdP?dQ 100
CONSENSUS.C -s----p--r-d.----Ee----------t-p-D 98
CONSENSUS.D --k--SS-pR-d------eQ------kA-t-p-Dw 100
CONSENSUS.O V-?-S???-?RK.Q?RQE-QE??--K??GP?G?P????SC??CTR?S?Q 85
CONSENSUS.CPZ ??-?????SR?-.?????K-?-?-??--????G-C 56

HIV-2/SIV Tat Consensus Sequences

<- vpR
CONSENSUS.A METpLKaPEsSL?syNEPsS?TSeqdv??QelakqGeEiLsQLyrPLEaCtNsCyCK?CcyhCQlCFlkKGLG 68
CONSENSUS.B --I--qEQ----k-Ssep--S---pV-NT-G-DN-------------k--d-t----K--------------- 73
CONSENSUS.D -----rEQ-n--e-sner--cis-a-a-tp-s-nlg---------pl---y-tc---k------f-------- 72

rev cds -> exon \/ exon
CONSENSUS.A IwY?RkgRRRRtPkKtK?hsssasD.KSISTRTg?SQptKkQKKTle?tvetd?glGr 120
CONSENSUS.B -c-drS..-k-Ss-RA-tTa---pd??-L-Ar--D--------keV-T-g?--l-P--SNTSTSRFA 135
CONSENSUS.D -c-Eqsr?----p--a-ant----n?k?isn-tRhc--k-ak-etV--a-a-ap--g- 126


